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Neural Networks Summary

Multiclass Classification  

Input(feature vector): 

Output(label): 

Goal: learning a mapping 

Examples: 

recognizing digits ( ) or letters (  or )
predicting weather: sunny, cloudy, rainy, etc
predicting image category: ImageNet dataset ( )



Linear models: Binary to multiclass  

a linear model for binary tasks (switching from  to  )

Can be written as

For any  s.t.  .

Think of  as a score for class  .



Function loss: Linear models for multi class classification  

Lets try to generalize the loss functions. Focus on the logistic loss today.

A probabilistic view of multinomial logistic regression:  

Observe: for binary logistic regression, with 

So for multi class:

This is called the softmax function.

Coverts scores  .



MLE of Softmax  

Use the MLE, Maximize probability of seeing labels  given  :

By using  , this is equivalent to minimizing:

This is the multiclass logistic loss. It is an upper-bound on the 0-1 misclassification loss

When  , multiclass logistic loss is the same as binary logistic loss.

 , Consider any ,

For , 

For , 

For  , and transferring labels from  .

Optimization  

Apply SGD, what is the gradient of

It's a  matrix. Let's focus on the  row.

If  

Think about  is a row vector, thus the derivative itself  should also be a row vector. 

 is a scalar, so  should be a row vector as well.

Else if 



Algorithm:

Initialize  (Or randomly). Repeat:

1. Pick  uniformly at random

2. Update the parameters

Think about why it makes sense intuitively.

Probabilities -> Prediction  

Having learned  , we can either

make a deterministic prediction 

make a randomized prediction according to 

Beyond linear models  

Suppose we have any model  (not necessary linear) which gives some score  for the datapoint  having 
the  -th label.

For linear model, 

How can we convert this score to probabilities? Use softmax function!

Once we have probability estimates, what is suitable loss function to train the model?

Use the log loss. Also known as the cross-entropy loss.

Log Loss / Cross-entropy loss: Binary case  

Why? If , want to max  , this is equivalent to min 



When the model is linear, this reduces to the logistic regression loss we defined before!

Linear model:  , 

Log Loss / Cross-entropy loss: Multiclass case  

This generalizes easily to the multiclass case. For datapoint  , if  is the predicted probability of label 
 ,

When the model is linear, this reduces to the logistic regression loss we defined earlier!

By combining the softmax and the log-loss, we have a general loss  which we can use to train a multi-
class classification model which assigns scores  to the k-th class. (These scores  are sometimes 
referred to as logits).

Multiclass logistic loss: Another view  

Recall that we cab predict using 

Verify:  



 Note that  .

One-versus-all  

Other techniques for multiclass classification: Cross-entropy is the most popular, but there are other black-
box techniques to convert multiclass classification to binary classification: one-versus-all (one-versus-rest, one-
against-all, etc.); one-versus-one (all-versus-all, etc.); Error-Correcting Output Codes (ECOC); tree-based 
reduction.

Idea: train  binary classifiers to learn "is class  or not" for each  .

Training: for each class ,

Relabel examples with class  as  , and all others as 
Train a binary classifier  using this new dataset.

Prediction: for a new example 

Ask each 
Randomly pick among all  s.t. 

Issue: will make a mistake as long as one of  errs.

One-versus-one  

Idea: train  binary classifiers to learn "is class  or ".

Training: for each pair 

Relabel examples with class  as  and examples with class  as 
Discard all other examples
Train binary classifier  using this new dataset

Prediction: for a new example 

Ask each classifier  to vote for either class  or 
Predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Neural Networks  

Linear -> Fixed non-linear -> Learned non-linear map



 

Linear models aren’t always enough. As we discussed, we can use a nonlinear mapping and learn a linear 
model in the feature space:

But what kind of nonlinear mapping  should be used? 

Can we just learn the nonlinear mapping itself?



Loss Function  

For model which makes predictions  on labelled datapoint  , we can use the following losses.

Regression:

Classification:

There're maybe other, more suitable options for the problem at hand, but these are the most popular for 
supervised problems.

Representation  

Linear model as a one-layer neural network:

For a linear model, 

To create non-linearity, can use some nonlinear (differentiable) function

Rectified Linear Unit (ReLU): 

Sigmoid function: 

Tanh: 

...

Adding a layer:



 , so 

Can think of this as a nonlinear mapping: 

Putting things together: a neural network

Each node is called a neuron.

 is called the activation function

can use  for one neuron in each layer to incorporate bias term
Output neuron ca use 

Layers refers to hidden layers (plus  or  for input / output layers)

Deep neural nets can have many layers and millions of parameters.

This is a feedforward, fully connected neural net, there are many variants (convolutional nets, residual 
nets, recurrent nets, etc.)

An L-layer neural net can be written as

 is the weights between layer  and 
 are numbers of neurons at each layer

 is input to layer 
 is output of layer 



 is activation functions at layer 

Now, for a given input  , we have recursive relations:

Optimization  

The optimization problem is to minimize

where

Use SGD to solve this, we use backpropogation to compute the gradient efficiently. More on this soon.

Generalization  

Overfitting is a concern for such a complex model, but there are ways to handle it.

For example, we can add  regularization.

 regularization: minimize

Demo: http://playground.tensorflow.org/

Neural Networks: Diving Deeper  

Representation: Very powerful function class  

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous function.

It might need a huge number of neurons though, and depth helps!

Choosing the network architecture is important.

for feedforward network, need to decide number of hidden layers, number of neurons at each layer, 
activation functions, etc.

Designing the architecture can be complicated, though various standard choices exist.

http://playground.tensorflow.org/


Optimization: Computing gradients efficiently using Backpropogation  

To run SGD, need gradients of  with respect to all the weights in all the layers. How do we get the gradient?

Here’s a naive way to compute gradients. For some function  of a univariate parameter  ,

If our network has  Weights, this scales as  . (This is still useful for "gradient checking")

Backpropogation: A very efficient way to compute gradients of neural networks using an application of the 
chain rule (similar to dynamic programming)

Chain rule:

For a composite function  :

For a composite function 

The simplest example 

Backprop: Intuition

Naive: apply chain rule for each weight

Backprop: reuse computation by starting gradients want input to each layers ( )

Backprop: Derivation

Drop the subscript  for layer for simplicity. For this derivation, refer to the loss function as  (Instead of ) 
for convenience.



Find the derivative of  w.r.t. to  

 : input of neuron 

 is the key quantity to store.

Adding the subscript for layer :

For the last layer  , for square loss

Using matrix notation greatly simplifies presentation and implementation:

where  is the element-wise product (a.k.a. Hadamard product).



The backpropagation algorithm:

1. randomly pick one data point 

2. Forward propagation: for each 

Compute  and 
3. Backward propagation: for each 

compute

Update weights

Non-saturating activation funcitons

Gradients depend on  . If activation function saturates  gradient is too small



Modern networks  

They are huge, and training can take time.

Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with 
a 3.4-month doubling time (by comparison, Moore’s Law had a 2-year doubling period). Since 2012, this metric 
has grown by more than 300,000x (a 2-year doubling period would yield only a 7x increase).

https://openai.com/blog/ai-and-compute/

https://huggingface.co/blog/large-language-models

https://openai.com/blog/ai-and-compute/
https://huggingface.co/blog/large-language-models


Optimization: Variants on SGD  

Mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 
128, etc.)

Consider  , where  is the loss function for the -th datapoint.

Recall that any   is a stochastic gradient of  if

Mini-batch SGD (also known as mini-batch GD): sample  at random, and estimate the average 
gradient over these batch of  samples:

Common batch size: , etc.

With ,  

Batch size s.t. batch fits in "GPU memory".

Adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across 
iterations),based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)



We often use a learning rate schedule.

Adaptive learning rate methods (Adagrad, RMSProp) scale the learning rate of each parameter based on some 
moving average of the magnitude of the gradients.

Momentum: add a "momentum" term to encourage model to continue along previous gradient direction.

"move faster along directions that were previously good, and to slow down along directions where the gradient 
has suddenly changed, just like a ball rolling downhill." [PML]

Initialize  and (velocity) 

For 

estimate a stochastic gradient 
update  for some discount factor ! " 
update weight 

Updates for first few rounds:

 ( )
 ( )

Why momentum really works? https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/


Many other variants and tricks such as batch normalization: normalize the inputs of each layer over the mini-
batch (to zero-mean and unit-variance; like we did in HW1)

Generalization: Preventing Overfitting  

Overfitting can be a major concern since neural nets are very powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout
early stopping

Data augmentation:

The best way to prevent overfitting? Get more samples. 

What if you cannot get access to more samples?

Exploit prior knowledge to add more training data:



Regularization & Dropout: We can use regularization techniques such as  regularization.

 regularization: minimize 

A very popular technique is Dropout. Here, we independently delete each neuron with a fixed probability (say 
0.1), during each iteration of Backprop (only for training, not for testing)

Early stopping: Stop training when the performance on validations set stops improving



Neural Networks Summary  

There are big mysteries about how and why deep learning works

Why are certain architectures better for certain problems? How should we design architectures?
Why do gradient-based methods work on these highly-nonconvex problems?
Why can deep networks generalize well despite having the capacity to so easily overfit?
What implicit regularization effects do gradient-based methods provide?

Deep neural networks

are hugely popular, achieving best performance on many problem.
do need a lot of data to work well.
can take a lot of time to train (need GPUs for massive parallel computing).
take some work to select architecture and hyperparameters.
are still not well understood in theory.
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