
Lecture 6

Lecture 6
Multiclass Classification

Linear models: Binary to multiclass
Function loss: Linear models for multi class classification
A probabilistic view of multinomial logistic regression:
MLE of Softmax
Optimization
Probabilities -> Prediction
Beyond linear models
Log Loss / Cross-entropy loss: Binary case
Log Loss / Cross-entropy loss: Multiclass case
Multiclass logistic loss: Another view
One-versus-all
One-versus-one

Neural Networks
Loss Function
Representation
Optimization
Generalization

Neural Networks: Diving Deeper
Representation: Very powerful function class
Optimization: Computing gradients efficiently using Backpropogation
Modern networks
Optimization: Variants on SGD
Generalization: Preventing Overfitting

Neural Networks Summary

Multiclass Classification

Input(feature vector):

Output(label):

Goal: learning a mapping

Examples:

recognizing digits () or letters (or)
predicting weather: sunny, cloudy, rainy, etc
predicting image category: ImageNet dataset ()

Linear models: Binary to multiclass

a linear model for binary tasks (switching from to)

Can be written as

For any s.t. .

Think of as a score for class .

Function loss: Linear models for multi class classification

Lets try to generalize the loss functions. Focus on the logistic loss today.

A probabilistic view of multinomial logistic regression:

Observe: for binary logistic regression, with

So for multi class:

This is called the softmax function.

Coverts scores .

MLE of Softmax

Use the MLE, Maximize probability of seeing labels given :

By using , this is equivalent to minimizing:

This is the multiclass logistic loss. It is an upper-bound on the 0-1 misclassification loss

When , multiclass logistic loss is the same as binary logistic loss.

 , Consider any ,

For ,

For ,

For , and transferring labels from .

Optimization

Apply SGD, what is the gradient of

It's a matrix. Let's focus on the row.

If

Think about is a row vector, thus the derivative itself should also be a row vector.

 is a scalar, so should be a row vector as well.

Else if

Algorithm:

Initialize (Or randomly). Repeat:

1. Pick uniformly at random

2. Update the parameters

Think about why it makes sense intuitively.

Probabilities -> Prediction

Having learned , we can either

make a deterministic prediction

make a randomized prediction according to

Beyond linear models

Suppose we have any model (not necessary linear) which gives some score for the datapoint having
the -th label.

For linear model,

How can we convert this score to probabilities? Use softmax function!

Once we have probability estimates, what is suitable loss function to train the model?

Use the log loss. Also known as the cross-entropy loss.

Log Loss / Cross-entropy loss: Binary case

Why? If , want to max , this is equivalent to min

When the model is linear, this reduces to the logistic regression loss we defined before!

Linear model: ,

Log Loss / Cross-entropy loss: Multiclass case

This generalizes easily to the multiclass case. For datapoint , if is the predicted probability of label
 ,

When the model is linear, this reduces to the logistic regression loss we defined earlier!

By combining the softmax and the log-loss, we have a general loss which we can use to train a multi-
class classification model which assigns scores to the k-th class. (These scores are sometimes
referred to as logits).

Multiclass logistic loss: Another view

Recall that we cab predict using

Verify:

 Note that .

One-versus-all

Other techniques for multiclass classification: Cross-entropy is the most popular, but there are other black-
box techniques to convert multiclass classification to binary classification: one-versus-all (one-versus-rest, one-
against-all, etc.); one-versus-one (all-versus-all, etc.); Error-Correcting Output Codes (ECOC); tree-based
reduction.

Idea: train binary classifiers to learn "is class or not" for each .

Training: for each class ,

Relabel examples with class as , and all others as
Train a binary classifier using this new dataset.

Prediction: for a new example

Ask each
Randomly pick among all s.t.

Issue: will make a mistake as long as one of errs.

One-versus-one

Idea: train binary classifiers to learn "is class or ".

Training: for each pair

Relabel examples with class as and examples with class as
Discard all other examples
Train binary classifier using this new dataset

Prediction: for a new example

Ask each classifier to vote for either class or
Predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Neural Networks

Linear -> Fixed non-linear -> Learned non-linear map

Linear models aren’t always enough. As we discussed, we can use a nonlinear mapping and learn a linear
model in the feature space:

But what kind of nonlinear mapping should be used?

Can we just learn the nonlinear mapping itself?

Loss Function

For model which makes predictions on labelled datapoint , we can use the following losses.

Regression:

Classification:

There're maybe other, more suitable options for the problem at hand, but these are the most popular for
supervised problems.

Representation

Linear model as a one-layer neural network:

For a linear model,

To create non-linearity, can use some nonlinear (differentiable) function

Rectified Linear Unit (ReLU):

Sigmoid function:

Tanh:

...

Adding a layer:

 , so

Can think of this as a nonlinear mapping:

Putting things together: a neural network

Each node is called a neuron.

 is called the activation function

can use for one neuron in each layer to incorporate bias term
Output neuron ca use

Layers refers to hidden layers (plus or for input / output layers)

Deep neural nets can have many layers and millions of parameters.

This is a feedforward, fully connected neural net, there are many variants (convolutional nets, residual
nets, recurrent nets, etc.)

An L-layer neural net can be written as

 is the weights between layer and
 are numbers of neurons at each layer

 is input to layer
 is output of layer

 is activation functions at layer

Now, for a given input , we have recursive relations:

Optimization

The optimization problem is to minimize

where

Use SGD to solve this, we use backpropogation to compute the gradient efficiently. More on this soon.

Generalization

Overfitting is a concern for such a complex model, but there are ways to handle it.

For example, we can add regularization.

 regularization: minimize

Demo: http://playground.tensorflow.org/

Neural Networks: Diving Deeper

Representation: Very powerful function class

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous function.

It might need a huge number of neurons though, and depth helps!

Choosing the network architecture is important.

for feedforward network, need to decide number of hidden layers, number of neurons at each layer,
activation functions, etc.

Designing the architecture can be complicated, though various standard choices exist.

http://playground.tensorflow.org/

Optimization: Computing gradients efficiently using Backpropogation

To run SGD, need gradients of with respect to all the weights in all the layers. How do we get the gradient?

Here’s a naive way to compute gradients. For some function of a univariate parameter ,

If our network has Weights, this scales as . (This is still useful for "gradient checking")

Backpropogation: A very efficient way to compute gradients of neural networks using an application of the
chain rule (similar to dynamic programming)

Chain rule:

For a composite function :

For a composite function

The simplest example

Backprop: Intuition

Naive: apply chain rule for each weight

Backprop: reuse computation by starting gradients want input to each layers ()

Backprop: Derivation

Drop the subscript for layer for simplicity. For this derivation, refer to the loss function as (Instead of)
for convenience.

Find the derivative of w.r.t. to

 : input of neuron

 is the key quantity to store.

Adding the subscript for layer :

For the last layer , for square loss

Using matrix notation greatly simplifies presentation and implementation:

where is the element-wise product (a.k.a. Hadamard product).

The backpropagation algorithm:

1. randomly pick one data point

2. Forward propagation: for each

Compute and
3. Backward propagation: for each

compute

Update weights

Non-saturating activation funcitons

Gradients depend on . If activation function saturates gradient is too small

Modern networks

They are huge, and training can take time.

Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with
a 3.4-month doubling time (by comparison, Moore’s Law had a 2-year doubling period). Since 2012, this metric
has grown by more than 300,000x (a 2-year doubling period would yield only a 7x increase).

https://openai.com/blog/ai-and-compute/

https://huggingface.co/blog/large-language-models

https://openai.com/blog/ai-and-compute/
https://huggingface.co/blog/large-language-models

Optimization: Variants on SGD

Mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

Consider , where is the loss function for the -th datapoint.

Recall that any is a stochastic gradient of if

Mini-batch SGD (also known as mini-batch GD): sample at random, and estimate the average
gradient over these batch of samples:

Common batch size: , etc.

With ,

Batch size s.t. batch fits in "GPU memory".

Adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across
iterations),based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

We often use a learning rate schedule.

Adaptive learning rate methods (Adagrad, RMSProp) scale the learning rate of each parameter based on some
moving average of the magnitude of the gradients.

Momentum: add a "momentum" term to encourage model to continue along previous gradient direction.

"move faster along directions that were previously good, and to slow down along directions where the gradient
has suddenly changed, just like a ball rolling downhill." [PML]

Initialize and (velocity)

For

estimate a stochastic gradient
update for some discount factor ! "
update weight

Updates for first few rounds:

 ()
 ()

Why momentum really works? https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Many other variants and tricks such as batch normalization: normalize the inputs of each layer over the mini-
batch (to zero-mean and unit-variance; like we did in HW1)

Generalization: Preventing Overfitting

Overfitting can be a major concern since neural nets are very powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout
early stopping

Data augmentation:

The best way to prevent overfitting? Get more samples.

What if you cannot get access to more samples?

Exploit prior knowledge to add more training data:

Regularization & Dropout: We can use regularization techniques such as regularization.

 regularization: minimize

A very popular technique is Dropout. Here, we independently delete each neuron with a fixed probability (say
0.1), during each iteration of Backprop (only for training, not for testing)

Early stopping: Stop training when the performance on validations set stops improving

Neural Networks Summary

There are big mysteries about how and why deep learning works

Why are certain architectures better for certain problems? How should we design architectures?
Why do gradient-based methods work on these highly-nonconvex problems?
Why can deep networks generalize well despite having the capacity to so easily overfit?
What implicit regularization effects do gradient-based methods provide?

Deep neural networks

are hugely popular, achieving best performance on many problem.
do need a lot of data to work well.
can take a lot of time to train (need GPUs for massive parallel computing).
take some work to select architecture and hyperparameters.
are still not well understood in theory.

	Lecture 6
	Multiclass Classification
	Linear models: Binary to multiclass
	Function loss: Linear models for multi class classification
	A probabilistic view of multinomial logistic regression:
	MLE of Softmax
	Optimization
	Probabilities -> Prediction
	Beyond linear models
	Log Loss / Cross-entropy loss: Binary case
	Log Loss / Cross-entropy loss: Multiclass case
	Multiclass logistic loss: Another view
	One-versus-all
	One-versus-one

	Neural Networks
	Loss Function
	Representation
	Optimization
	Generalization

	Neural Networks: Diving Deeper
	Representation: Very powerful function class
	Optimization: Computing gradients efficiently using Backpropogation
	Modern networks
	Optimization: Variants on SGD
	Generalization: Preventing Overfitting

	Neural Networks Summary

